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Abstract

Bifurcations in velocities from a state of homogeneous axisymmetric deformation are investigated for a coated elastic
cylinder subject to axial tension or compression. The cylinder and the finite-thickness coating have circular cross
sections. At the coating/core contact, a linear interface is introduced to simulate imperfect bonding. The particular case
in which the thickness of the coating becomes infinite is also addressed. This may model the behaviour of a fiber
embedded in an infinite matrix. Generic modes of bifurcations are investigated in the elliptic range, comprised axi- and
anti-symmetric modes. Incompressible, hyperelastic materials, including Ogden, Mooney—Rivlin, and J,-deformation
theory of plasticity, are considered in the applications. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Foam-filled circular columns, thick sandwich-wall circular cylinders, coated bars and fibers are axi-
symmetric structures subject to tensile or compressive loads, which have been successfully employed in a
broad range of applications, including naval, offshore and aeronautical construction and cable technolo-
gies. The load-carrying capacity of these structures is limited by the emergence of various failure patterns at
different structural scale. These may include: global or local buckling, separation between layers, nucleation
and growth of fractures. Accordingly, models at different levels of sophistication can be employed, ranging
from structural mechanics-based approaches (Herrmann and Forrestal, 1965; Karam and Gibson, 1995;
Budiansky, 1999) to numerical techniques (Hunt et al., 1999).

In this paper, an approach is developed which allows consideration of various bifurcation modes of
different types. In particular, an axisymmetric geometry is considered, where a solid bar of circular cross
section is connected through an imperfect interface to a coaxial, finite-thickness coating. Both the solid bar
and the coating are composed of incompressible, transversely-isotropic materials sufficiently general to
embrace, in addition to some hypoelastic solids not investigated, the hyperelastic cases of the Ogden
material (and thus Mooney—Rivlin and neo-Hookean limits) and the J>-deformation theory material. The
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latter may model the behaviour of metals under proportional loading. The considered structure is subject to
a homogeneous, axisymmetric, finite deformation inducing pure axial tension or compression. Before bi-
furcation, along the fundamental path, there is no interaction between the core and the coating, but in-
teraction obviously occurs for bifurcation fields.

Bifurcations of the velocity problem are sought using the standard Trefftz criterion. This criterion has
been successfully used in plane strain (Biot, 1965; Hill and Hutchinson, 1975; Young, 1976; Needleman,
1979; Triantafyllidis and Maker, 1985; Steif, 1986a,b, 1987; Needleman and Ortiz, 1991; Steigmann and
Ogden, 1997) and axisymmetric problems (Wilkes, 1955; Fosdick and Shield, 1963; Cheng et al., 1971;
Hutchinson and Miles, 1974; Bassani et al., 1980; Haughton and Ogden, 1979, 1980; Simpson and Spector,
1984; Miles and Nuwayhid, 1985; Davies, 1991; Chau, 1992, 1995; Pan and Beatty, 1997a,b; Chau and
Choi, 1998). In the axisymmetric case, Wilkes (1955) and Pan and Beatty (1997a,b) analyze bifurcations of
an incompressible, thick-walled tube subject to compression, Chau and Choi (1998) include a radial con-
fining pressure (adopting constitutive equations useful for geomaterials), Haughton and Ogden (1979)
extend the analysis to axial tension of a general class of rubber-like materials. Fosdick and Shield (1963)
superimpose a small bending on finite axisymmetric deformation of a solid bar. Axisymmetric bifurcations
of a circular cylinder are investigated by Cheng et al. (1971), Hutchinson and Miles (1974), Miles and
Nuwayhid (1985) and Chau (1992). For an hyperelastic, compressible solid bar, subject to uniaxial com-
pression, Simpson and Spector (1984) and Davies (1991) investigate the character of the equilibrium
equations and give conditions for the existence of buckling or barrelling solutions of the bifurcation
problem. Finally, Haughton and Ogden (1980) consider bifurcation of a cylinder rotating about its axis.

As far as the authors are aware, bifurcation of a coated, axially-loaded, cylindrical bar has been not yet
considered. This is the goal of the present article. To allow the possibility of core/coating separation, an
imperfect contact at the bar/coating interface is considered. The assumed contact model was proposed by
Suo et al. (1992) and is simply a linear relation between the increment of nominal traction and the velocity
jump across the interface. The same model was used by Bigoni et al. (1997) in a plane strain situation.
Interestingly enough, the presence of the interface introduces one additional characteristic length in the
problem.

The case when the elastic coating becomes infinitely thick is also explicitly analyzed. This may be im-
portant in the modelling of the behaviour of an isolated fiber in a composite.

In the problem analyzed in the present article, many particular situations may be obtained as limiting
cases. For instance, when the core is vanishing stiff, bifurcations of the thick-walled tube analyzed by
Wilkes (1955) and Pan and Beatty (1997a,b) are recovered. A similar situation occurs when the interfacial
stiffness (between core and coating) is set equal to zero. In this case, the minimum bifurcation stretch is
obtained between the core and the coating taken separately. Other interesting cases arise in the small and
large wavelength limits, corresponding, respectively, to a kind of surface or interfacial wave-mode and to an
Euler buckling-mode. In the former case, results are found which were given by Biot (1965) and Hutchinson
and Tvergaard (1980).

As a general conclusion, we observe that the model presented in this article is able to capture a wide
range of bifurcations enclosing: Euler buckling and barrelling for compression loads, necking-type bifur-
cations and high-frequency azimuthal modes for tensile loads, surface modes and shear banding both in
tension and compression.

2. Field equations and constitutive relations
Quasi-static incremental deformation of a time-independent solid body is considered as a function of a

time-like parameter controlling the deformation process. Equilibrium rate equations in the absence of body
forces may be written as
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DivS = 0, (1)

where the divergence operator is defined in the reference configuration for every second-order tensor field A
and constant vector a, such that (DivA)-a = Div(A"a) and S is the material time derivative of the first
Piola—Kirchhoff stress tensor S, related to the Cauchy stress T through

S=JTF ", 2)
where F is the deformation gradient and J its determinant. The material time derivative is
S:J(T+Tdivv—TLT)F-T, (3)

where v is the spatial description of the velocity, L, the velocity gradient and div denotes the spatial di-
vergence operator.

An axisymmetric geometry with symmetry axis singled out by unit vector e, will be analyzed. In par-
ticular, a cylindrical bar with an elastic coating will be considered. Across the coating/bar cylindrical
contact surface, nominal traction must be continuous

[STe, =0, )

where the symbol [ - | denotes a jump of the relevant argument, i.e. [S] = ST — S~ and e, is the unit normal
vector to the contact surface (thus e, - ¢, = 0) directed toward the coating (denoted by +) and away from
the core (denoted by —). In the case of a perfectly bonded interface, continuity of velocity v

[v]=0 (5
must be imposed across the interface in addition to Eq. (4). However, we will use a more relaxed condition
than Eq. (5), from which the latter can be obtained as a limit case. In particular, we adopt a simplified

version of the model of linear interface proposed by Suo et al. (1992), in which the nominal traction rate at
the interface is linearly related to the jump in velocity

Se, = k[v], (6)

where Se, stands for STe, = S7e, and k is a non-negative interfacial stiffness modulus, of dimension [stress/
length]. In the original version of the Suo et al. model, employed also by Bigoni et al. (1997), k is replaced
by a 3 x 3 stiffness matrix. A detailed explanation of model (6) is deferred to Appendix A.

Constitutive equations describe time-independent, incrementally linear mechanical behaviour of an in-
compressible and transversely isotropic material about axis e, and may be expressed in terms of stress rate
potential U as

%:wﬂvﬂ, trD =0 (7
where the symbol (V) denotes the Jaumann derivative of the relevant argument and p = tr'T/3 is the mean
Cauchy stress (playing the role of a Lagrange multiplier), so that p p. The potential U depends on the
Eulerian strain rate D, on G = e, ® e., which condenses the directional, i.e. anisotropic, properties of the
material (for stress-induced anisotropy, e, coincides with the principal axis of Cauchy stress orthogonal to
the isotropy plane) and on 4;, denoting a generic set of invariants representing the current state. Different
choices of invariants 4; are possible, including principal stretches to describe stress induced elastic an-
isotropy and/or scalars to describe instantaneous strain hardening of deformation theory of plasticity.

Constitutive equations (7) describe a broad class of material behaviour including hyperelasticity and a
subset of hypoelastic relations when e, denotes a principal stress direction (Truesdell and Noll, 1965).
Material frame indifference restricts the possible dependence of U on D and G. In particular, it requires
that the potential function U be an isotropic function of the two arguments D and G, namely, that
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U(D,G) = U(QDQ",QGQ"), for every rotation Q. This allows us to use the Spencer and Rivlin (1960)
representation theorem for an isotropic scalar function of two symmetric, second-order tensors. Following
Zysset and Curnier (1995) and retaining only the quadratic terms in D in the rate potential (7), one obtains

v

T = E[D] + p1. (8)
where the fourth-order tensor E is the following function of G
E=II+IGRG+ I (GRI+I’RG)+TIIRG, G=e ®e, 9)
where symbol ® denotes, for every set of second-order tensors {A, B, C}, the tensorial product
_ c+cC’
(AZB)[C] = A= =B (10)

The following important remarks should be added to Eq. (9):

(1) Tensor [E has both the minor symmetries.

(2) Tensor E has also the major symmetry. This becomes immediate by observing that, due to the in-
compressibility constraint trD = 0, the term I'y G ® I vanishes when applied to D, and can therefore be
added to the right-hand side of Eq. (9) without altering it.

(3) Incremental modyli I'; (j =1,...,4) in Eq. (9) fully depend on the state through invariants A;.

(4) Condition p = trT/3 imposes the following relation between I',, I';, and I

I, 4+2I5+ 3y =0, (11)
so that Eq. (9) is defined by three independent I';’s only.
The incremental moduli I'; (j = 1, ...,4) may be written equivalently as functions of another set of three
independent incremental moduli, x;, u, and u,; that will be used later
=4, =2, D=2+ 2 =4y, T3=2p =4+ 20, Ta=2p, — 2. (12)

The dependence of moduli I';’s (or, equivalently, p,’s) on the current state can be obtained from different
points of view. In particular, for an incompressible Cauchy elastic material, isotropic in its reference
configuration, the Cauchy stress is an isotropic function of the left Cauchy—Green strain tensor B = FF'

T=-nl+uB+oa B, (13)

where 7 represents an arbitrary hydrostatic pressure and oy, o are functions that depend on the principal
stretches 1, 4, and 13, satisfying the incompressibility constraint 1;4,4; = 1.
Writing Eq. (13) with reference to the Eulerian principal axes yields o; and o_;

1 [(O’] —63)/1%_(62—0'3)2%]

o =

L B b, J2—2
1 2 1 3 2 3 (14)
1 g1 — 03 0y — 03 N
o = — , M =1,
RS2 l)ﬁ—)@ )é—)j] 1

where o, (i = 1,2, 3) are the principal components of T. The inequalities ;; > 0 and o_; < 0 are assumed to
hold. If the material is hyperelastic, with strain energy function per unit reference volume W (1, /5, 43), the
stress differences in Eq. (14) are given by
ow ow
—0r = ) —— — 03 = Sy —— 15
01— 03 1621’ 02 — 03 Azaiz, (15)

where W (41, 72) = W(A1, ia, A7 A5 0).
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The Ogden material (and thus the particular cases of Mooney—Rivlin and neo-Hookean materials), as
well as the J,-deformation theory of plasticity, correspond to different choices of strain energy function W.
In particular:

(5) The incompressible Ogden material corresponds to the strain energy

M M
W:Z;I(A;s + A5 40y -3, Z,u:Z]:ﬁsys’ oy =1, (16)

where p is the shear modulus in the ground state and f,, y, are constitutive constant parameters (f,y, > 0,
index not summed, Ogden, 1972). Mooney—Rivlin material corresponds to M = 2, y;, = 2 and y, = —2 and
neo-Hookean material to M = 1, y; = 2, so that f§; =

(6) The J,-deformation theory material corresponds to the strain energy

K 27, . ,
=y 165“, 6 = \/5 [(mm)z + (In4)* + (1n;v3)2} . Mk =1, (17)

where K is a constitutive stiffness parameter and N is an hardening exponent (0 < N < 1).

In the axisymmetric geometry considered here, we identify 4; with 4, and employ the symmetry
by =13 =1] -172 , so that the response functions «; and «_; depend now only on the axial stretch 4,. Taking
the materlal tlme derivative of Eq. (13) and using the definition of Jaumann derivative, it is found that the
incremental constitutive law can be expressed in the form (8) and (9) where (Appendix B)

(o . 2 doyy B dor_; _(n l oy
F] _2<iz OC]/LZ), </1 ﬂz> <dAZ /lz d)uz ), FS — (/LZ ],Z> <051 + }q )7 (18)

and I'y can be obtained from Eq. (11). In terms of the incremental moduli y; (i = 1,2,3) we have
i /1, 2 RET doy (1
== — —a_ | 5+ 2 - ——
/11 3 al(iz—i_ZAZ) o 1(/134— z) L (A -1+ az \% 1,

1l /2 1 R CT ldey (1
= o[ =+ 22) - 2, — 1) 4= - 1
=3 oq(;tz—l-ﬂz) o 1< + ) ZdAZ(AZ )+2 4 </12 2, (19)

o/, 1
== —+ A ) —a | 5+ 4
a 2“‘<zz ) ( )

The functions o, «_; and the incremental moduli for the above material models are:
(7) Incompressible Ogden material:

:A l Z[g (},S_A ,5/2>__Zﬁsysi1 ,S/z]
:é Z Byvs (21';’5 + A 2), 1 =é ZM: By, ()& + 2);’:/2), s
5= s=1

;jz ji Z ﬂ (A)s e 13/2) (20)

For the Mooney—Rivlin material equations (20) simplify to
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1 2 1 Wy +p
#2:3[ﬁl(&+kf)_ﬁ2<;é+2iz>‘|7 u3:%7

OClzﬂla OC—1:ﬁ2’

1 1 2
=3 [51 (iz+2}j> —ﬂz</ﬁ+ﬂq>

(21)
so that for the neo-Hookean model (21) still hold with 3, = 0;
(8) Jo-deformation theory solid:
be (AIni 1 2 Ini 1
o =KV 1 = - oy =KV 1= —_— |,

P Jj-l()j—l 3) P ;j-l(;j—l 3) ’
1 N-1 1 N-1 Loovoi e +1 )

U= gKNSe , U = 6K<N+ e, 7, Uy = EKse P In 4.,

where ¢, = | In /,|. Note that the uniaxial stress—strain relation that may be obtained from Eq. (13) is simply
c=Ke 'Ini.

3. The problem

A circular cylinder with a coaxial circular coating is considered. In the initial, stress-free configuration
the cylinder has radius R, and height L and the coating has equal height, equal internal radius R/ = R_ and
external radius R.. Cylinder and coating are defined by the regions of the three-dimensional Euclidean
space, respectively:

O0<RLR,, 0< 6O < 2m, 0<Z<L,

RF<R<R. 0<O@<2tn, 0<Z<L, (23)

where (R, ©,Z) are cylindrical coordinates with the axis Z coincident with the axis of the cylinder. The
condition R, — oo corresponds to the important situation of a cylinder embedded in an infinite matrix.

The structure is subjected to prescribed homogeneous axisymmetric deformation with principal stretch
/. aligned with the axis of the cylinder. The current configuration is defined through cylindrical coordinates
(r,0,z), so that

r=AR,  0=0, z=.7, (24)

where 1., 4y and 4, are the principal stretches, which, due to symmetry, satisfy 19 = 4,. The incompress-
ibility constraint

Ardoly =1
allows us to express Eq. (24) as functions of the axial stretch only, namely

r=i""R,  0=0, z=.7, (25)
so that the current geometry is described by

}"‘_ = }’:— = /’L;I/ZRC, }"c - /I;I/ZRC, l == )VZL. (26)

C

Possibility of bifurcation from the deformed configuration (26) is investigated. A Lagrangean formu-
lation of the field equations is adopted with the current configuration taken as reference, so that F = I and
J=1
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The following boundary conditions are prescribed:

o null tractions at the external lateral surface of the coating

Srr == Srr = 07 S9r = S@r = Oa Szr = Szr = 07 atr = Fe; (27)
e imperfect contact at core/coating interface of the type (4) and (6)

[Srr] = [S()r]] = [Szr] = O; Srr = k[[vrﬂv S()r = k[[U()], Szr = k[vzﬂv at r =rg; (28)
e perfectly smooth contact with a rigid, flat constraint on the faces z =0, /

S.=0, S8.=0, ©v,=0 atz=0,L (29)

In the case when the elastic coating becomes infinitely thick, boundary conditions (27) at » = r, have to be
replaced by the decay condition of the velocity

v—0 as r— oo. (30)

Both the coating and the inner core are made up of the incompressible, transversely isotropic material
defined by Egs. (8) and (9). These equations become, in cylindrical coordinates

SH‘ :P =+ 2:“2er =+ 2(.“1 - #2)1409’ Szz :p + 2(:"[1 - G)Lzza

Soo = P+ 2u2Loo + 2(py — 1)Ly, Swo =80 = 2ty — ) (Lo + Los),
. g g : g g
Srz - (#3 + E)er + (,u3 - E)Lzrv Szr - (,u'} - E)er + (,u} - E)Lzra
. g o - o g
z — Y Lz ( __)Lz7 z:( __)Lz ( __)L27
Sp (u3+2)9+u32 0 Seo = (M3 =5 )Lo=+ (s =5 | Lo
where ¢ is the current Cauchy axial stress (that is different from core to coating) and the velocity gradient L
has components

(31)

1
er = Urys,y Lr@ = (Urﬂ - UB); er = Upz,
_ _ 1 —
Ly, = v, Loo = (v + vg,), Ly, = vy, (32)
U0
Lzr = Uz, Lz9 - Lzz = Uzz,

where a comma denotes partial derivative. The incompressibility constraint becomes
1
trL =v,, +— (v, + vgp) + v.. = 0. (33)
r

The above-described problem is governed by the scalar parameter /., playing the role of time in the
continuous, axisymmetric, quasi-static deformation defining the fundamental path. This path corresponds
to uniaxial stress aligned with the axis of the cylinder and jumping across the interface. The boundary
conditions (27)—(29) are trivially satisfied in the fundamental path, so as the equilibrium rate equations (1)
which, in cylindrical coordinates, become

Srr,r + %Sr(?.(? + Srz.z + S’V’:S’){) = Oa
S()r,r + %S()(),() + S()z,z + w = 07 (34)
Szr‘r + %Sz()‘() + Szz‘z + % =0.
The introduction of two velocity potentials, Q = Q(r,0,z) and ¥ = ¥(r,0,z), allows us to express the
velocity components as

Yo

=Q, +—2 (35a)
r
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w="2_y, (35b)
v = —M(Q), (35¢)
where
1 1
A () :;( ), + ('),r+r_2( ) 00

is the two-dimensional Laplacian operator in polar coordinates. It may be important to note that vy =0
and Q and ¥ are independent of 6 in the case of incremental axisymmetric deformations. In this special
case, Eq. (35b) gives ¥ = ¥(z) and thus ¥ can be set equal to zero without loss of generality.

Through Egs. (352)-(35¢) the incompressibility constraint is a priori satisfied. Substituting these into
Eqgs. (34) yields

b+ CH(Q), 4D (9 + % q/,gzz> + %//(q’)ﬂ ~0, (36a)

po+CAM(Q) .+ D(Qpoc — 1V ) — Erdl(V), =0, (36b)

p-— AP (Q) —BM(Q) . =0, (36¢)
where

A=u3—%, B:2M1_M3_%a C:2N2_N3+%7 D:N3+%7 E=2p — .

Except in the case of incremental axisymmetric deformation (that will be considered later), the pressure rate
p may be eliminated from Egs. (36a)-(36¢) deriving (36a) and (36b) with respect to 6 and r, respectively, and
subtracting the resulting equations. Analogously, (36b) and (36¢) may be derived with respect to z and 6
and subtracted. Assuming 4, E # 0, we obtain

,/%[(,//erg%)lp] —0,
(Ca-rig)(a-sig)ol,
B : R 3

where coefficients p?, p3 (real or complex) depend, through the incremental moduli g, p,, ps, on the axial
stretch /. and are the solutions of the characteristic equation

Ap* + (B+ C)p> + D = 0. (38)

(37)

(P3P +.4(P)]

0z’

The nature of roots +p, and +p, of Eq. (38) defines the regime classification:

complex conjugate +p, and +p, in the elliptic complex (EC) regime;

pure imaginary +p, and %p, in the elliptic imaginary (EI) regime;

real £p, and £p, in the hyperbolic (H) regime;

two real and two pure imaginary +p, and +p, in the parabolic (P) regime.

It should be noted that failure of ellipticity corresponds to the emergence of shear bands. Therefore, the
investigation of bifurcation will be restricted in the present paper to the elliptic range, where D > 0, £ > 0,
so that the coefficient
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D
P%ZE

A
Zﬁﬁf
is always positive either in (EI) or in (EC) regimes. Moreover, 4 > 0.
In the special case of axisymmetric bifurcations, ¥ = 0, Eq. (36b) disappears, and (36a) and (36¢) are
independent of 6. Therefore, the pressure rate p may be eliminated from (36a) and (36c) deriving (36a) and
(36¢) with respect to z and r, respectively, and subtracting the resulting equations. Assuming 4 # 0, we obtain

262 262

where p? and p3 are defined as in Eq. (37). Note that Hutchinson and Miles (1974) use Eq. (39) with a
potential corresponding to our —€Q,.

3.1. Bifurcation modes

Bifurcation in velocity is sought in the separate-variables form

Q(r,0,z) = w(r) cos nlsin yz, (40a)
Y(r,0,z) = y(r)sinnd cosnz, (40b)
p(r,0,2) = g(r) cos ncos (400)

so that boundary conditions (29) are automatically satisfied. Obviously, the functions w(r), ¥(r) and ¢(r)
differ from cylinder to coating, but the longitudinal # = kn/l (k =1,2,...) and the circumferential
n (n=20,1,2,...) wave numbers are assumed equal in the core and coating. These wave numbers fully
define the bifurcation mode. Note that n = 0 corresponds to axisymmetric modes. An important aspect to
be considered is that the choice Eqs. (40a)—(40c) rules out from the analysis all possible rigid body motions.

Substitution of Egs. (40a) and (40b) into equilibrium equations (37) (note that Eq. (40c) giving ¢(r) is for
the moment not needed) gives

L) — PP L, () =0, .
(Lo + 3L+ piP) 0 =022 (2,() — p3n*y),

/3

(41)

where a prime denotes differentiation with respect to r and

2,00 = (O + L =20
e r r?
is the Bessel operator. Introducing the function ¢(r) = Z,(¥), Eq. (4la) becomes a modified Bessel

equation of order n, namely

Zu(d) — pin’p =0. (42)
A solution of this can be written as
d(r) = pin’leids(psnr) + c2K(p3nr)), (43)

where 7,(x) and K, (x) are the modified Bessel functions of order n and ¢, ¢, are arbitrary constants.
Now, the solution to

ZL4() = p3r’lerdu(psnr) + 2K, (psnr)] (44)
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1S

W(r) = cily(psnr) + 2Ky (psnr) + c3r” + car™, (45)
where ¢; (i =1,...,4) are arbitrary constants.
Knowing (r), we may evaluate
(L) = i’ y) = —cspin’n™" + capiPnr (46)
which allows us to rewrite Eq. (41b) as
(Lo + PP )L+ pa)o = 1 pips(— car’ + ™). (47)

The solution to Eq. (47) can be expressed equivalently in two ways,

{ o(r) = =S+ 547" + andy(por) + axdy(panr) + asYu(pynr) + asYa(panr),

n

o(r) = =Sr"+4r7 4 b HY (pynr) + boHO (pynr) + bsHP (pynr) + baHP (pynr), (48)
where J,(x) and Y, (x) are the Bessel and Neumann functions of order n, respectively, and H (x) and H?(x)
are the Hankel functions of order n. Moreover, the constants a; and b; (i = 1,...,4) may be now complex
and must be arranged in such a way that a real w(r) always results for any value of p, and p,. For instance, in
the (EC) regime, where p, and p, are complex conjugate, the relations J,(x) = J,(x), Y,(x) = Y,(x) and
HY(x) = HY(x) (i,j = 1,2) imply a; = @y, a3 = a4, by = by, and b, = b3, where a superposed bar denotes the
complex conjugate.

It is important to note that a substitution in Eqgs. (35a)—(35c¢) reveals that the terms 7" and " in Egs. (45)
and (48) describe a null velocity field, so that they may be eliminated.

As a conclusion, the function y(r) is

W (r) = cilu(psnr) + c2K,(psnr), (49)
while w(r) takes one of the following form:

o(r) = au(pinr) + azlu(panr) + asYu(pinr) + as Y, (panr), (50a)

o(r) = bil (pyr) + b2V (pair) + bsH (pynr) + bat,? (pynr). (50b)

The expression (50a) will be used to describe w(r) in the inner cylinder while Eq. (50b) will be used in the
coating. This will facilitate the imposition of the boundary conditions.
In the special case of axisymmetric bifurcations (n = 0), Eq. (39) yields

(Lo + pi?) (Lo + pi)o] =0, (51)

which, except for an inconsequential constant, admits again the solution (50a) and (50b) with n = 0.
It may be observed that in all cases expressions (49) and (50a), (50b) are the solutions of

(&L, —pir )y =0,

52
(Lo +pi) (L0 + pir)o = 0. 52
Representation (40a)—(40c) allows us to obtain g(r), when used into Eq. (36¢)
A
an expression still valid when » = 0.
A substitution of Egs. (40a) and (40b) into Eqgs. (35a)—(35c¢) yields the velocity field at bifurcation
v, = f(r) cosnbcosnz, vy = g(r) sinnfcosnz, v, = h(r) cosnfsinnz, (54)

where
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n nn
f) =+ 00, g0 ==y, k) = - 2,(0) (55)

Henceforth, superscripts — and 4+ will denote quantities associated with the inner cylindrical core and
with the external coating, respectively.

For the cylinder, the requirement of bounded solution along axis z (i.e. » = 0) provides the following
simplification of Egs. (50a), (50b) and (49)

o (r) = ayJ,(pynr) + ay Ju(pynr), Y (r) = e Li(psnr). (56)

The expressions (49) and (50a), (50b) for y(r) and w(r) can be employed in Egs. (55) and (53) to yield,
for the cylinder

_ _[nn _ _ _ _[nn _ _ _ _n _
f () =a [7Jn(p1 nr) — pyn*Ju (py nr)} +a, [7Jn(pz nr) = py w1 (3 nr)} +¢ ;In(m nr),
(57)
_ _ 1’[?1 7]}1 n _ _ _
g (r) = —q I (pynr) —ay I (pynr) — [ L(psnr) + pynlui(p; r/r)}, (58)
h=(r) = a; py*n*Ju(pynr) + a5 p3 0, (pynr), (59)
q (r) = —ay p;°n* (A p7* + B ) (pynr) — a; p3°n’ (A py° + B )Ju(pynr), (60)
and for the coating
nn
£ =bi [, —H (i) = pi P (o) )] + o3 [ 12 —H,(p3nr) = pin *H (o3|
nn nn
+ 05| T2HD (o) = i H (o) | + 07 [ T2 (o) — 3ot (05|
n
+er—lpsnr) +¢; ;Kn(pinr), (61)
nn nn nn nn
g (r) = =b{ —=H"(p{nr) = b3 —=H (p3nr) — by —=H.? (p{nr) — b ——H (3 11r)
— et 21t Tl (prnr)| — K K 62
°r | (o3 nr) + pynlaa (pynr)| —c5 (p3nr) + p3nK,1(p3nr) |, (62)
h(r) = bl pl*n*HY (pi nr) + b3 p3*nHY (p3 ) + b3 p >0 HE (ol ) + b p3*n*HP (p3nr), (63)
gt (r) = —p*n* (A > + BY) [bTH" (pfnr) + b3 HP (pfnr)| — p37n (AT p3” + BY)
x [byH" (p3nr) + by H (p3nr)], (64)
where alTr, bf and ¢ (i=1,2; j=1,...,4) are arbitrary constants and the notation pi? (i = 1,2) stands

for (p7)* (i=1,2).
Eqs. (57) and (64) fully specify the velocity field (54), which yields, through Egs. (32) and (31), the
material time derivative of the first Piola—Kirchhoff stress, namely
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S, = {q +2u "+ 2(py — W) <j; + n%)} cos nl cos 1z,

Sor = 21ty — 11y) (g/ - n]: - §> sin n0 cos 1z, (65)
r r

, AN .

S = (1t —5)(}; — fn)cosnBsinyz.

3.2. The coated bar

The rate of nominal stress (65) depends, through functions f¥(»), g¥(r), #¥(r), ¢7(r) on the nine un-
known constants «;", b] and ¢ (i=1,2; j=1,...,4). These may be now obtained imposing boundary
conditions. For the coated cylinder, an homogeneous algebraic system is obtained in the form

Ma] =01, [o]' = [ay ay by by by by o ol (66)

so that the bifurcation condition can be written as det[M“] = 0 (matrix [M€] is explicitly defined in Ap-
pendix C). Note that the determinant of [M°] is always real or pure imaginary. Once the current geometry
and state is known, the bifurcation mode has to be selected in terms of the circumferential wave number 7,
and of the three independent dimensionless parameters governing the formulation. These can be deter-
mined with elementary dimensional analysis considerations and reflect the characteristic lengths present in
the problem, namely, the radius of the core, the thickness of the coating and the characteristic length related
to the interface:

Ve

nre, ) ]EZ

re

. (67)

)

When the circumferential wave number, the relative stiffness of the materials and parameters (67) have been
selected, the bifurcation condition can be numerically solved to give the critical values of axial stretch A..

3.3. The fiber embedded in an infinite medium
It may be worth noting that in the specific case of infinite thickness of the coating, the decay condition of

velocity implies that one coefficient of Eq. (49) and two of Eq. (50b) must be a priori null. In fact, for high
values of the arguments x and y, we have

2 .
H(l) ~ 7el(x—(n+l)1r/4) 68a
w0~ ; (68a)
H(2) (x) ~ ie—i(x—(n+1)n/4) (68b)
" X ’

1,(y) ~ \/%e (68¢)
K,(y) ~ \/%e (68d)

where, in our case, x = p;nr (j=1,2) and y = p7yr. In the elliptic regime, since p; is a positive real
number, (68c) shows that the first term of Eq. (49) becomes unbounded as r — oo and hence ¢ must
vanish. Moreover, the (EI) and (EC) regimes have to be considered separately for Eq. (50b). In the (EI)
regime p; and p; are pure imaginary and H,EZ)(p;“nr) (j = 1,2) becomes unbounded for large values of the
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radius, so that coefficients b7 and b, must vanish. In the regime (EC) p; and p; are complex conjugate, in
the form 0 + iv, & — iv respectively, with v positive real number. Thus the second and third term of (50b)
become unbounded and b5 and b7 must be null. As a conclusion, in the elliptic regime the decay condition
of velocity implies

bi=bj =0 (EI)
Sa— 3 4 )
=0 {b; =bf =0 (EC), (69)

so that imposing boundary conditions yields the bifurcation criterion
[IMME g = 0], [a]" = [a; a5 ¢ bF b ¢f] (ED)
[MM’EC][a} _ [0]7 a]T — [al_ a, ¢y bl+ bj;r C;] (EC)a

[
where matrices [MMF1] and [MMEC] are specified in Appendix C.

4. Results

We report results obtained for Mooney—Rivlin material and J,-deformation theory of plasticity. Tension
and compression are analyzed in the latter case, whereas bifurcation in tension is excluded in the former
case, which is therefore restricted to compression. In all cases we include the analysis of the limit corre-
sponding to infinite thickness of the coating, simulating an isolated fiber in a continuum. It may be worth
recalling that the analysis will be restricted to bifurcations occurring in the elliptic regime. Critical axial
stretch 4, at bifurcation is reported in Figs. 1-8, versus the product between the longitudinal wave number
and the radius of the inner core r, i.e. the dimensionless parameter nr. governing the bifurcation mode.
Obviously, A, ranges between 1 and 0 in compression and is greater than 1 in tension. The critical cir-
cumferential mode # is indicated by a small number close to the relevant part of the curve and a spot
denotes a transition between two different values of n. For material models of the type analyzed in this
paper, the axial stretch is related to the axial Cauchy stress o by

o ij -1
2 /123 +1’
so that the axial stress at bifurcation may be easily evaluated from the critical stretch.
With the exception of Fig. 1, which is referred to the perfectly bonded case, different values of interfacial
stiffness parameter & are considered, ranging between the extreme cases corresponding to perfectly bonded

interface (k — oo) and complete separation (k = 0). Several well-known particular cases are recovered and
discussed in detail below.

4.1. Mooney—Rivlin

For Mooney-Rivlin material loss of ellipticity with possible shear band formation, as well as bifurca-
tions in tension are a priori excluded. Only uniaxial compression is therefore analyzed. The regime of the
equilibrium equations is always (EI) with

Az —
P = ia P2 = 1/13/27 P3 = Az #/:81
L= 22>/

The current axial stress (different from core to coating) is specified by
o= B2 =)+ B — ),
where 5, and f3, are related to the shear modulus u through Eq. (16), namely, u = 5, — f,.
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Fig. 1. Axial stretch at bifurcation (/,) for a coated elastic cylinder as a function of the core radius (r.) multiplied by the bifurcation
wave number (17). Various values of thickness of the coating (r./r.) are considered. The coating and the core are both Mooney—Rivlin
materials with f3,/f, = —0.1. A small number close to a curve denotes the critical circumferential mode, changing in correspondence of
a spot on the curve. (a) The coating is weaker than the core, = /u™ = 10. (b) The coating is stiffer than the core, p~ /u* = 0.1.

Figs. 1 and 2 are relative to the coated bar, whereas Fig. 3 refers to the elastic cylinder embedded in an
infinite matrix. In all cases two incremental core/coating stiffness ratios u~/u* are considered. In particular,
parts (a) of the figures pertain to a more compliant coating on a stiffer core (1~ /u™ = 10). Vice versa, parts
(b) of the figures pertain to a stiffer coating on a more compliant core (¢~ /u* = 0.1). Moreover, the in-
vestigation is limited to f,/f, = —0.1.

Fig. 1 refers to a perfectly bonded interface and different values of coating thickness are investigated,
ranging from r./r. = 1.05 to r./r. = 5. Three curves are reported in Fig. 1(a) lying in a narrow band. These
exhibit the same features, namely, for small values of 5r. the dominant mode is antisymmetric (n = 1),
whereas the symmetric mode (n = 0) prevails for high longitudinal frequencies. The transition point be-
tween n =1 and n = 0 varies from nr. ~ 4.40, for r./r. =5, to nr. = 13.34, for r./r. = 1.05. All curves
approach Euler buckling as nr. — 0 and the surface instability as nr, — oo, the latter corresponding to
/. =~ 0.444. Tt may be important to note that in the small wavelength limit two situations can occur, cor-
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Fig. 2. Axial stretch at bifurcation (4.) for a coated elastic cylinder (r./r. = 1.2) as a function of the core radius (r.) multiplied by the
bifurcation wave number (). Various values of interfacial stiffness k are considered. The coating and the core are both Mooney—Rivlin
materials with f3,/f, = —0.1. A small number close to a curve denotes the critical circumferential mode, changing in correspondence of
a spot on the curve. (a) The coating is weaker than the core, p~/u* = 10. (b) The coating is stiffer than the core, u~/ut = 0.1.

responding either to the surface instability of the coating or to the interfacial instability at core/coating
interface. For Mooney-Rivlin material, these two situations have been analyzed in detail by Biot (1965) and
have been shown to differ from those pertaining to plane strain. In particular, for cylindrical geometry,
surface and interfacial instabilities correspond to a plane strain incremental deformation superimposed on a
current situation where the material is free to expand in the transverse direction. For the stiffness ratios
considered in Figs. 1-3, i.e. ¢~ /ut = 10 and u~/u* = 0.1, the interfacial instability occurs at 1, ~ 0.392, so
that the critical condition for high-frequency bifurcation is the surface instability limit, 1, ~ 0.444. Com-
pared to Fig. 1(a), the effect of the thickness of the coating is more evident in Fig. 1(b) (= /u" = 0.1), even
if the long and short longitudinal wavelength limits remain the same. The curve relative to r./r. = 1.2 in
Fig. 1(b) differs from the others because there is a small range of values of nr. (between 2.23 and 3.22) where
the critical circumferential mode corresponds to n = 2. A detailed analysis (not reported here) has revealed
that a similar feature is shared by all curves with r./r. ranging between 1.08 and 1.27. It may be observed
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Fig. 3. Axial stretch at bifurcation (/.) for an elastic cylinder embedded in an infinite elastic matrix as a function of the core radius (r.)
multiplied by the bifurcation wave number (). Various values of interfacial stiffness k are considered. The coating and the core are
both Mooney-Rivlin materials with f3,/, = —0.1. A small number close to a curve denotes the critical circumferential mode, changing
in correspondence of a spot on the curve. (a) The coating is weaker than the core, = /u™ = 10. In the separate detail the transition
between antisymmetric and axisymmetric modes is evidenced for k=0,0.1,1. ‘0(ch)” and ‘0(b)’ stand for axisymmetric mode relative
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to a cylindrical hole and to a bar, respectively. (b) The coating is stiffer than the core, g~ /u* = 0.1.

from Fig. 1(b) that, with the exception of the curve relative to r./r. = 1.05, the thicker is the coating, the

lower is the bifurcation stretch, for the reported range of nr..

An interesting particular in the graph is that the minimum bifurcation stretch relative to the thin coating
(re/r. = 1.05) is smaller than that relative to a thicker coating (r./r. = 1.2), at the value yr. = 2.78. More in

the detail, if we define the total axial load P, of the coated cylinder as

2
6—|—G+(r—§—l>,
rC
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Fig. 4. Axial stretch at bifurcation (4.) for an elastic cylinder as a function of the core radius (r.) multiplied by the bifurcation wave
number (7). A small number close to a curve denotes the critical circumferential mode, changing in correspondence of a spot on the
curve. J>-deformation theory material is considered for N = 0.1 and 0.4.

we may conclude that the total axial load relative to r./r. = 1.2 is 1.66 times greater than that relative to
re/r. = 1.05.

Fig. 2 is relative to a coated bar (r./r. = 1.2) with a compliant interface between core and coating.
Different values of the interfacial stiffness parameter k are considered, ranging between the extreme case of
separation (k = 0) and perfect bonding (k — co). The core is stiffer than the coating in Fig. 2(a), where the
effects of the interfacial compliance are qualitatively and quantitatively important. The curve referred to
the inner bar without coating is also reported in the figure for comparison (labelled as “‘uncoated bar’). The
antisymmetric (n = 1) and the axisymmetric (n = 0) critical circumferential modes are the only relevant
bifurcation modes in the perfectly bonded case and for k = 10 and k = 1. The situation is more complicated
for k = 0.1 and k = 0. In the former case there is a small range of values of yr. (between 2.56 and 3.89)
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Fig. 5. Axial stretch at bifurcation (4.) for a coated elastic cylinder (r/r. = 1.2) as a function of the core radius (1) multiplied by the
bifurcation wave number (;). Various values of interfacial stiffness & are considered. A small number close to a curve denotes the
critical circumferential mode, changing in correspondence of a spot on the curve. The coating and the core are both J,-deformation
theory materials with K~ /K™ =2, N~ =0.4 and N* =0.1.

where the mode n = 2 becomes critical. The latter case, k = 0, corresponding to complete separation, is the
combination of the bifurcation stretches relative to the inner bar and the external coating taken separately.
In particular, for 0 < yr.<0.67 the critical condition is attained by the solid bar (with antisymmetric
mode), whereas for nr. > 0.67 bifurcations are due to the isolated coating. Previous investigations of bi-
furcation of a hyperelastic tube subject to axial loading were restricted to axisymmetric and antisymmetric
modes (Wilkes, 1955; Pan and Beatty, 1997a,b). We find here that the mode n = 2 becomes critical in
a significant range of nr., for r./r. =1.2. For a Mooney-Rivlin material with f,/8, = —0.1 this
always happens for ratios r./r. < 1.55. Moreover, for decreasing values of the ratio r./r., higher-order
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Fig. 6. Axial stretch at bifurcation (/4,) for a coated elastic cylinder (r./r. = 1.2) as a function of the core radius (r.) multiplied by the
bifurcation wave number (7). Various values of interfacial stiffness k are considered. A small number close to a curve denotes the
critical circumferential mode, changing in correspondence of a spot on the curve. The coating and the core are both J,-deformation
theory materials with K~ /Kt = 0.5, N~ = 0.1 and N* = 0.4. (a) nr. < 10. (b) nr. <40.
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Fig. 7. Axial stretch at bifurcation (/.) for an elastic cylinder embedded in an infinite elastic matrix as a function of the core radius (r.)
multiplied by the bifurcation wave number (). Various values of interfacial stiffness £ are considered. A small number close to a curve
denotes the critical circumferential mode, changing in correspondence of a spot on the curve. The coating and the matrix are both
Jr-deformation theory materials with K~ /K* =2, N~ = 0.4 and N* =0.1.

circumferential modes become available; for instance, the mode n = 3 starts to be critical for an elastic tube
with r./r. < 1.14.

The situation where the coating is stiffer than the core (u~/ut = 0.1) is reported in Fig. 2(b). Here the
bifurcation behaviour is strongly conditioned by the external coating and the critical stretches referred to
the two limiting cases of perfect bonding and complete separation set a narrow zone in which all curves lie.
In contrast to Fig. 2(a), all curves in Fig. 2(b) exhibit a range where the circumferential mode n = 2 is
critical. For perfectly bonded interface, the curve r./r. = 1.2 of Fig. 1(b) is recovered while, for k =0, the
same results reported in Fig. 2(a) are obtained. Similarly to the part (a) of this figure, the bifurcation
stretches of the inner bar are plotted for comparison (labelled as ‘uncoated bar’). A calculation of the total
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Fig. 8. Axial stretch at bifurcation (4.) for an elastic cylinder embedded in an infinite elastic matrix as a function of the core radius ()
multiplied by the bifurcation wave number (7). Various values of interfacial stiffness k are considered. A small number close to a curve
denotes the critical circumferential mode, changing in correspondence of a spot on the curve. The coating and the matrix are both
Jr-deformation theory materials with K~ /K* = 0.5, N~ = 0.1 and N* = 0.4.

axial loads relative to the cases of perfect bonding and isolated core reveals that the total load at bifurcation
of the coated bar is always higher than that of the inner bar for all longitudinal modes. At 5r. = 6 the ratio
between these total loads approaches a minimum, equal to 1.46.

It is clear from Fig. 2 that at low values of #r, (high longitudinal wavelengths) the bifurcation behaviour
of the structure is controlled by the core, while for higher values of 5. the coating dominates the behaviour.
This trend becomes more evident as the interfacial stiffness decreases.

A general conclusion already emerges from Fig. 2. Generally, a decrease in the interfacial stiffness yields
a pronounced increase in critical stretch and, in a sense, the interfacial compliance produces curves ‘in-
termediate’ to the perfectly bonded and complete separation cases.
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Fig. 3 is relative to the case in which the coating becomes infinitely thick, representative of a fiber
embedded in a matrix. In part (a) of the figure the inner core is stiffer than the matrix (¢~ /u™ = 10) and the
bifurcation behaviour of the structure is dominated by the stiffer material for all values of interfacial
stiffness. Only antisymmetric and axisymmetric modes are involved in all cases. The transition between
them occurs always when #r. > 10. For non-vanishing interfacial stiffness, a dominant wavelength can be
recognized, corresponding to a buckling-like mode of the inner cylinder. Moreover, with the exception of
the complete separation case k = 0, the limit 57, — 0 can be viewed as the vanishing of the radius of the bar.
This corresponds to a situation where an infinite layer is compressed at its opposite faces, a case in which
bifurcation is not found. For this reason, all curves of Fig. 3 with k # 0 approach the infinite compression
limit A, = 0 when nr, — 0.

In the case of complete separation between fiber and matrix (k = 0), critical stretches are those relative to
the bar for nr. < 10.30 (antisymmetric mode) and for nr. > 14.27 (axisymmetric mode, labelled as ‘0(b)’ in
the particular of Fig. 3(a)). For 10.30 < yr, < 14.27 the matrix with the cylindrical hole sets the critical
stretch for bifurcation with an axisymmetric mode (labelled as ‘O(ch)’). Note that the entire curve relative to
a cylindrical hole in a matrix is also reported in the figure. Another interesting detail is that the curve
relative to the case of perfectly bonded interface approaches the interfacial instability, A, =~ 0.392, in
the small wavelength limit 7, — oo, while the other curves tend to the surface instability of the cylindrical
core.

The bifurcation behaviour of a soft bar embedded in a stiffer matrix is reported in Fig. 3(b). The in-
terfacial compliance plays here an important role, particularly at high longitudinal wavelengths. For suf-
ficiently small values of k a dominant wavelength develops as in Fig. 3(a), but for stiff interfaces this
does not occur. When the two bodies are completely separated the critical stretches of Fig. 3(a) are re-
covered.

4.2. Jr-deformation theory of plasticity

As will become evident soon, the behaviour for J,-deformation theory of plasticity turns out to be much
more complicated than for the Mooney—Rivlin case. In particular, the constitutive assumptions of the J,-
deformation theory of plasticity allow the possibility of a variety of bifurcation modes, including necking in
tension and loss of ellipticity in tension and compression. Within the elliptic region, in which diffuse bi-
furcation modes are sought, and with the restrictions on the hardening exponent N (0 < N < 1), the regime
is always (EC). The uniaxial stress-strain law is ¢ = K¢ 'In .. Loss of ellipticity occurs at (EC)/H
boundary at a strain level corresponding to values of /. satisfying

(71)

3Inj. \*_ 6z A+l Inj. |1
3N+1) “3N+12-1 7 [3N+1]7 3

Only two values of N will be considered, namely, 0.1 and 0.4. For N = 0.1 loss of ellipticity occurs at
/.~ 0.448 in compression and /, =~ 2.234 in tension, while for N = 0.4 it occurs at A, ~ 0.337 and
4. = 2.972. Failure of ellipticity will be denoted by a dotted, horizontal line in all following figures.

Fig. 4 has been reported by way of illustration. It pertains to the case of an isolated elastic cylinder with
N =0.1 and N = 0.4. In the latter case, the complete curves of critical stretch for bifurcation have been
reported, for different modes » ranging between n = 0 and n = 11. The dashed parts of the curves are not
attainable in a continuous deformation path starting from an unloaded configuration. In the former case,
N = 0.1, only the critical curves have been reported.

Let us focus on the N = 0.4 case, starting from the behaviour in compression. Critical stretches corre-
spond to the antisymmetric mode at high longitudinal wavelengths (nr. < 3.78) and to the axisymmetric
mode for nr. > 4.53. There is also a small range where the mode » = 2 becomes critical. As expected,
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bifurcation occurs at A, = 1, corresponding to ¢ = 0, in the long wavelength limit n». = 0. Close to nr. =0
the cylinder bifurcates in an Euler buckling mode. In the short longitudinal wavelength limit a surface in-
stability corresponding to an incremental plane strain mode (similar to that observed for the Mooney—Rivlin
material) is found at 4, = 0.572. With a generic N the critical stretches in tension and compression are, for
surface instability, the solutions of the equation (Bassani et al., 1980; Hutchinson and Tvergaard, 1980)

3(1—2"*)Inj, = 3N + 1. (72)

Let us now analyze tension. Here all circumferential modes are involved in giving the critical stretch in some
range. In particular, for #r. = 0 the condition for the necking instability is recovered. This occurs at the
maximum load point, when the true stress ¢ equals the tangent modulus 3y, yielding 1, = exp(N) for the J;-
deformation theory solid. The axisymmetric mode dominates in the range of #r. between 0 and approxi-
mately 1.63, after which the mode n = 1| prevails. If we continue to follow the curve corresponding to the
axisymmetric mode n = 0, we find that the critical stretch increases and approaches, for high longitudinal
frequencies nr. — oo, the surface instability limit corresponding to the root of Eq. (72) in tension (for
N = 0.4 thisis 4, ~ 2.614). This occurs with all individual curves relative to the different modes n. However,
the global bifurcation behaviour is determined by the lower envelope of these curves. In this way, the actual
small-wavelength bifurcation limit reached by the bar in tension is not an incremental plane strain field,
rather, it involves a circumferential wave mode (Hutchinson and Tvergaard, 1980). This occurs at /, ~ 2.14
(for N = 0.4) and corresponds to the ‘orange peel’ pattern experimentally observed by Rittel and Roman
(1989), Rittel (1990) and Rittel et al. (1991).

The case N = 0.1 is similar to the case N = 0.4, with the difference, in compression, that only anti-
symmetric and axisymmetric modes set the critical stretches. From Eq. (72) the surface instability limit in
compression corresponds to A, =~ 0.638, while the curve of bifurcation tends to the value A, =~ 1.56 in
tension.

Figs. 5 and 6 pertain to the coated cylinder, with r./r. = 1.2. This is investigated for various values of
interfacial stiffness k. Solutions relative to the isolated coating and core are reported in both figures, for
comparison.

The results reported in Fig. 5 are relative to K~ /K™ =2, N~ = 0.4 and N* = 0.1, so that the coating is
weaker than the core. Let us focus first on the behaviour in compression and follow the curves with in-
creasing k. In the case of complete separation (l% 0), the bifurcation stretches are always set by the
coating. For nr. < 0.76 the critical mode is the antisymmetric, while for 0.76 <nr. < 2.35 and nre > 2.35
the critical modes are n = 2 and n = 0, respectively. The curves relative to k = 0.1, k = 1 and k = 10 exhibit
the same succession of critical circumferential modes and their overall trend is similar to that reported in
Fig. 2 for the Mooney—Rivlin material. In particular, for high longitudinal wavelengths, the coated cylinder
follows the behaviour of the inner bar, whereas the coating dictates the bifurcations in the short wave-
lengths range. Moreover, all curves in the figure (with the exception of the case ‘uncoated bar’) approach
the surface instability limit of the external coating, /. =~ 0.638, as yr. — oo. For a perfectly bonded inter-
face, the antisymmetric mode prevails when nr. < 3.22, then the mode n» =2 becomes critical, for
3.22 < nre < 5.16. In the range 5.16 < yr. < 12.75, eight modes follow one upon the other, i.e. n =0, 3, 0, 4,
5, 6, 7, 8 (the latter two modes fall outside the range of the figure). The mode for nr, = 10 is n = 5. The
curve attains a minimum outside the range of the figure, at yr. = 11.34 (1, ~ 0.479, greater than the loss of
ellipticity of the coating). Moreover, for nr. = 12.75 the axisymmetric mode prevails again, approaching the
surface instability (A, = 0.638) as the other cases do. Further analyses (not reported) show that this par-
ticular trend becomes more evident as the ratio N~ /N7 increases.

In the tension range, all curves show the typical behaviour described for the cylindrical bar, i.e. the
critical circumferential mode increases with a regular succession as 7. increases. A necking-type instability
at nr, = 0 involving core and coating is met at a strain level corresponding to 4, =~ 1.390, independently of
the value of interfacial stiffness <. When the interfacial compliance becomes high, the curve of the isolated
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coating is approached. This curve sets the lower bifurcation stretch in the case of complete separation
between core and coating. All curves approach the surface instability limit for the coating (4, ~ 1.56) as
nr. — oco. The bifurcation stretches of the uncoated bar (N~ = 0.4) are plotted for comparison. These
closely follow the curve relative to the perfectly bonded interface (at least for nr. < 4.5) in compression,
whereas in tension there is a remarkable gap between the two curves when nr, — 0 and for short longi-
tudinal wavelengths. However, the total load at necking for the coated structure is approximately 1.21 times
greater than that for the uncoated bar, while the same ratio falls to 1.03 for the surface instability limit. It is
clear from Fig. 5 that an increase in the interfacial compliance precipitates the solution on the case cor-
responding to the isolated coating, i.e. to the case pertaining to a hollow cylinder.

Fig. 6 refers to a situation where the coating is stiffer than the core, with constitutive parameters
K /K" =0.5, N~ =0.1 and N* = 0.4. In compression, now, the isolated coating does not dominates bi-
furcation for all values of yr. when k = 0, but for #r. < 1.24 and for nr. > 22.38 the core bifurcates at lower
stress than the coating. Indeed, at high longitudinal wavelengths the core (N~ =0.1) attains the limit
/. 72 0.638, whereas the coating (N* = 0.4) tends to 1, ~ 0.572. In Fig. 6(b) the situation for nr, up to 40 is
reported, to show how the curves behave after the cross point at yr. ~ 22.38, 4. ~ 0.641. Beyond it, the
curves relative to £ = 1 and & = 10 attain a minimum and then tend to the surface instability of the core,
while in the perfect bonding case the surface instability of the coating is approached. It may also be im-
portant to note that, differently from Fig. 5, the critical circumferential modes for & = 10 and perfect
bonding are n = 1 and n = 0 only. In the part of Fig. 6(a) pertaining to tension, the stretch at which necking
occurs is /. ~ 1.229, a value intermediate between the isolated coating and the uncoated bar. Here the
core sets the minimum stretch at bifurcation in the case of complete separation. Curves relative to the
perfect bonding and to k = 10 intersect the curve relative to the core at nr. = 2.52 and nr. = 2.77, re-
spectively.

In all cases, the critical curve is the envelope of several circumferential modes that follow one upon the
other as nr. increases. In the high longitudinal frequency limit #r. — oo, curves relative to compliant in-
terfaces approach to the critical value of the uncoated bar (4, ~ 1.56), whereas the limit set by the external
coating (4, & 2.14) is reached in the perfect bonding case.

Figs. 7 and 8 are relative to the elastic cylinder embedded in an infinite elastic matrix. The core is stiffer
than the external medium (K~ /K" =2, N~ =0.4 and N* = 0.1) in Fig. 7, whereas the opposite situation
occurs in the case of Fig. 8, where K~ /K" = 0.5, N~ =0.1 and N* = 0.4.

In the part of Fig. 7 relative to compression, the effect of the interfacial compliance is strong, particularly
at low values of yr., where a dominant longitudinal wavelength comes into play as the interfacial stiffness
decreases. This corresponds to a buckling-like mode for the core. When k = 0 the bifurcation stretch is set
by the inner bar for #r. < 3.23 (n = 1) and by the matrix with a cylindrical hole for yr. > 3.23. The whole
curve for this case, which always coincides with the axisymmetric case, is reported in the figure. At yr. =0
all curves with k # 0 approach the loss of ellipticity limit of the matrix, 4. ~ 0.448. The same feature occurs
also in tension, where the matrix approaches the (EC)/H boundary at A, =~ 2.234. In this part of the dia-
gram, the axisymmetric mode is always the first available at low values of #r.. This is immediately followed
by n=3fork=0,0.1,1 and by n = 8 for k = 10. In the latter case, the mode n = 8 is very close to the loss
of ellipticity threshold in the range 0.87 < yr. < 3.5. In all four cases, the critical circumferential mode n
increases regularly as nr. increases, approaching the surface instability limit of the matrix, 4, ~ 1.56. When
the fiber and the matrix are perfectly bonded, diffuse bifurcations occur only in compression for y#r. < 5.66,
involving modes » = 1 and »n = 2. Beyond #r. = 5.66 strain localization terminates the homogeneous re-
sponse of the structure. In tension this phenomenon always precedes diffuse modes so that the curve relative
to perfect bonding is not reported.

In Fig. 8, the case k = 0 always corresponds to bifurcation stretches of the uncoated bar. For low values
of nr. loss of ellipticity in the matrix precedes diffuse bifurcation modes for every value of interfacial
compliance. In compression, only axisymmetric and antisymmetric modes are involved.
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5. Conclusions

A specific bifurcation problem in velocities has been analyzed, namely, a coated elastic cylinder of
circular cross section, subject to uniform stretch with one Eulerian axis coaxial to the axis of cylinder.
Effects of several features have been explored, as related to:

complexity of constitutive equations;

sign of the current stress (tensile or compressive);

presence of imperfect bonding at the interface;

relative (to the core diameter and stiffness) thickness and stiffness of the coating.

All the above features have been found to play important roles in determining the bifurcation thresholds
and modes. Particularly for the case of J,-deformation theory material, the bifurcation modes describe rich
geometrical patterns, comprised shear banding, surface and interfacial instabilities, Euler buckling, and
high frequency azimuthal modes. From experimental point of view, a variety of modes in axially-loaded
structures are known to occur, including parallel wrinkles and ‘orange-peel’ in metal bars (Rittel, 1990;
Rittel et al., 1991), buckled modes, shear bands and microcracks of anodic coatings on aluminium sub-
strates (Block, 1970; Mehdizadeh and Block, 1972), axisymmetric patterns in silicone-rubber cylindrical
shells with foam cores (Karam and Gibson, 1995), surface exfoliations in boreholes (Vardoulakis and
Sulem, 1995), short wavelength patterns in steel tubes filled with aluminium foam (Seitzberger et al., 1997)
Results of this article suggest that the combined effect of geometry, interfacial conditions and complexity of
constitutive laws may describe the above-mentioned bifurcation patterns.
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Appendix A. Model of interface

We consider two continuous bodies (denoted by indices + and —) that, in the reference configuration,
are in contact through an orientable and smooth surface = (Fig. 9). Material points in the Euclidean three-
dimensional space are labelled by xg, so that the current configurations of the two bodies are defined by the
deformations

1B =B, X =p(x), X B, =B, X =1 (X)) (A.1)

Let us assume, for the moment, that the two bodies separate during deformation. The contact area = splits
into two current areas ¢* and ¢ . In particular, let us consider two spatial points x* € ¢© and x~ € &~
corresponding to the same material point x; = x; € Z. At these points, the outward normals and the area
elements will be different in general. The Nanson’s formula implies

ny dag =J~'(F)'n"da = —J7'(F")'n" da™, (A.2)

where day and n; are the area element and the unit normal to &~ (directed away from —) in the reference
configuration. The unit vectors n* and n~ are the unit outward normals to surfaces ¢* and ¢, so that n~
and n* map back to n; and nj = —n; in the reference configuration.
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Fig. 9. Kinematics of finite deformation of two bodies in contact in the reference configuration through a linear interface.

We assume that the two surfaces ¢ and ¢~ are connected with some material able to transmit forces,
such as a glue. Therefore, we assume that, with reference to the above two points, the resultant forces are
equal and opposite, and then

Tn"dat =-T n da, (A.3)
and in terms of the first Piola—Kirchhoff stress tensor S:

S™nj = —S™n,, (A.4)
where putting e, = n; = —n/ and taking the material time derivative, Eq. (4) is obtained. Moreover, we

introduce a constitutive equation for the interface where the resultant force at the two corresponding points
is related to the distance between these points:

Sny =k(u" —u"), (A.5)

which, taking the material time derivative (with e, =n; = —n;) and using Eq. (4), becomes Eq. (6). Pa-
rameter k£ has dimension [stress/length] and represents a strictly positive interfacial stiffness, assumed
constant for simplicity. It should be noted that Eq. (A.5) implies that the stress transmitted across the
interface vanishes when the jump in displacement is null. Moreover, the two limit cases £k = 0 and k£ — oo
describe the two relevant situations of perfect separation and perfectly bonded interface, respectively. The
constitutive equation (A.5) must satisfy two essential requisites:

e it must be invariant with respect to the permutation 4+ < —;
e it must satisfy the principle of material frame indifference.
The first requirement is evidently met, because a permutation + and — gives
S'ny = —k(u" —u7), (A.6)

which is fully consistent with Eq. (A.4).
The second requirement needs more attention, and will be explained assuming, for the moment, a more
complicated form of Eq. (A.5) where k is replaced by a second-order constitutive tensor K

Sny =K(u" —u"). (A7)

Let us consider two motions x(Xo, ) and x*(xo, ) related by a change in observer
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X' =q(t) + Q1) (x — o), (A-8)

where q(¢), 0 and Q(¢) are two points and a rotation, respectively. From Eq. (A.8) the transformation laws
can be obtained for first Piola—Kirchhoff stress S, unit normal ny and difference in displacements between
any two points u(xg, ) —u(x}, ):

S*=Qs, (A9a)
n; = n, (A.9D)
(x4, 1) — w0 (%, 1) + x) — x4 = Qlu(x}, 1) — u(x, 1) + x) — xi. (A.9¢)

For points on the interface x§ = x} = X, (A.9¢c) becomes
(u"—u )" =Qut —u"), (A.10)

and therefore the requirement that the interfacial response be independent of the observer implies the fol-
lowing transformation rule for the interfacial stiffness tensor K:

K' = QKQ". (A.11)

Obviously, Eq. (A.11) is satisfied in the simple situation Eq. (A.5), where K = &L
More generally, using Eq. (A.7) instead of Eq. (A.5) to obtain the incremental interfacial constitutive
equations, we get

Sy =K@u* —u) +K(v" —v). (A.12)

In the case investigated in this paper, as well as in (Bigoni et al., 1997), the transversal stress in the fun-
damental path is null, so that u* —u~ = 0 and thus Eq. (A.12) simplifies to

Sny =K(v —v), (A.13)

which is the interfacial constitutive law employed by Bigoni et al. (1997).

If the two surfaces do not separate, a unilateral contact condition should be imposed at = to prohibit
interpenetration of the two bodies in contact. This yields nonlinear incremental equations. In the problem
analyzed in the present paper, the rate equations (6) are employed to hold incrementally from a state in
which ut —u™ = 0. Therefore, in the interest of simplicity, interpenetration may be admitted as an ap-
proximation, which might be physically motivated by a non-zero initial thickness of the interface.

Appendix B. Incremental constitutive law

Taking the material time derivative of Eq. (13), we obtain

T=—-al+uB+o (B +uB+a B, (B.1)
where

B=LB+BL", (B.2a)

By =—-B'L+L'B"). (B.2b)

Using the definition of Jaumann derivative

Voo
T=T-WT+TW,
where W is the spin, it follows that
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v
T=-l+u(BD+DB)—o« (B'D+DB')+&B+4a_ B (B.3)

v
Employing the identity;v) = trT/3, the Lagrange multiplier = can be eliminated, then
v
T pI+ OC1(]31)+DB)dev - (B_1D+DB_l)dev +0-61(B)dev + O.cfl(B_l)dev’ (B4)

where (A)4, = A — (trA/3)I denotes the deviatoric part of any second-order tensor A. Moreover, due to
the incompressibility constraint, the material time derivatives of functions «; and «_; can be obtained in the
useful form

oo,y - +aocm
ou " d
and, using the spectral decomposition of the left Cauchy—Green strain tensor with b; (i = 1,2,3) denoting

the Eulerian principal axes, we may express the material time derivative of the principal stretches as
functions of B, i.e.

Jy (m=1,-1), (B.5)

Ol =

: 1 : 1
L= 2}” b1 Bbl, Ly = 222 b2 Bbz (B6)
By employing now Eq. (B.2a), we may rewrite (B.5) in terms of the Eulerian strain rate D
i = (b @b+ " by @by ) D (= 1,—1) (B.7)
m 5, 1+, O =1 . .
For axisymmetric geometry A, = A, and A, = 13 = 12—1/2’ so that oy = oy(/4,) and o = a_;(4,). With
G = e, ® e, the tensors B and B™! take the following form
Vs —l G+11 Bl (L G+ 21 (B.8)
L /LZ )L’Z - )\‘i LZ z A .
In addition, we have the equations
; 1 : do,, .
AZ_ZTLZeZ'BeZ’ Oy = Q% 2.G-D (m=1-1). (B.9)

As a conclusion, Eq. (B.4) can be written in the axisymmetric case in the form (8) and (9).

Appendix C. Elements of [M€], [M™F'] and [MMEC]

Let us introduce the functions

J(pjx,y,r) =x" (1), (p; nr) + ¥~ (r)p; nrdu (p; nr), (C.1)
L7 (x,p,r) = x5 (r)L(p3nr) + y¥(r)ps nrlu (p317), (C.2)
HO(pj,x,y,7) = x* () H (pFnr) + v (R pinrHL) (pinr) (1= 1,2), (C3)
K. (x,y,r) = x"(r)K,(p3nr) + ¥ (r)p3 nrKoper (p3 11). (C4)

By definition, J.(p;, x,y, r) is relative to the inner cylindrical core only, whereas H" (p;,x,y,r) (i = 1,2) and
K.(x,y,r) are defined only for the coating. The function 77 (x, y, r) is relative to both bodies and the relevant
superscript has to be considered.
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The elements of the matrices [M€], [MME!] and [MMEC] in Egs. (66) and (70) are:

MG = MY = MY = J(p; Fi(re), 2B, ) (j=1,2),
MG =M = MNEC = 20E" 1 (n— 1, 1,7y,

M1C4 :MMYEI = Mll\z/tLEC = —ﬂHfl)(pl,ﬂ(rc),2E,rc),

M = M = —pHY (py, Fy(re), 2, 7e),

M = — pH? (py, Fi(re), 2E, re),

M = MY = —aH® (py, > (re), 2E, o),

MG = —2npE T (n —1,1,r.),
MG =M = MYWEC = —2npE K. (n — 1,—-1,r,),

Mg = My ™ = MYVEC = 2nE" T (p; 1 —m 1) (=1,2),
MG = MY = MYYEC = 2E7 17 (—G(re), 1, 1),

ME, = My = MOy = —2niaEHWY (py, 1 — 1, r0),
Mg = My = —2nlE HY (py, 1 = n, 1, 7e),

MG = —2npE HP (p, 1 —n, 1,r.),

MS = M = —2npEYH® (py, 1 —n,1,7,),

Mg = 2REIF(G(re), =1, 7)),

MS = My = My ™C = 20EK(G(r.), 1, 70),

My, = My H = My = (p2 = ) A J(pyn,—1,r)  (j=1,2),
MG = M¥H = MY = —nd 17(1,0,r.),

Mg, = My ™ = My ™ = —u(pf? = 1)ATHY (py,n, —1, 1),
My; = M%EI —Rp3* = DATHY (pyyn, 1, 70),

My = — flp* = 1) AT H (py,n,—1,r0),

My :Mé?EC —i(p3> = VA HP (py,n, —1,rc),

M3C8 = n,uAJ’Ij(l,O,rC),

MS = MWF = My FC = nid*K. (1,0, ),

Mg =M™ = MIPC = J.(p), Fi(re) + nk, 2E — k,re) (= 1,2),
MG = MPE = MMEC — uI-(2(n — 1)E + k,2E, 1),

MS, = MM = MMEC = —kHD (), 0, —1, 1),

M =M™ = —kH" (py,n, —1, 1),

Mﬁ) = - ]€H£2>(p17”7 —1,7),

M4C7 :M}‘\g‘EC = —l%sz)(pz,n7 —1,r.),

My = —nl%[*(l 0,r.),

MG = MM = MFEC = —nkK, (1,0, r.),

5145
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MS = My = MC = nd (p;, 21 = n)E — k,2E,r) (= 1,2),
MS = MM = MMEC = [ (=2EG(r.) — nk,2E — k,r.),

MG = MM = MMEC = nkH O (p,, 1,0, 1),

Mg = Mg ™ = nkH™ (py, 1,0, r.),

M5C6 = nlEHf)(ph 1,0,7),

M = M = nkH? (py, 1,0, r.),

MS§ = kIF (n,1,r.),

M5C9 = M;\gEI = MMEC IEKj(n, —1,r),

67
MG = My™ = My™ = —nd17(1,0,7.),
MG = My = MY FC = —p2kHY (p,, 1,0, 1),
MG = MM = —p22kHDY (p,,1,0,7),
Mg = — p*kHP (py,1,0,70),
Mg = Mé\g EC — p;’ZIEH,EZ)(pZ, 1,0,r.),
Mg =0,

Mg =M™ = M = J.(p,n(p? — DA+ pk, (1 — p)A,re) (7 =1,2),

0
MS. =HY (p; 3, Fi_a(re), 2E,r.)  (j=4,5),
MS = HP(p; 5, Frs(re),2E,r)  (j=6,7),
M7C8 = 2nE+I:—(n - 17 larc)a
M7C9 = 2nE+K*(n — 17 —1’7’6)7

ME=0 (j=1,2,3),
Mg =nH" (p, 5,n—1,-1,r.) (j=4,5),
Mganfz)(ijsa” l,-l,r) (j=6,7),
MG = 17(G(r), ~ 1, 72),
Mgc9 =K.(G(re), 1,re),

Mg, = (p/% = DH" (p;_5,n,—1,re)  (/=4,5),
M9Cj: (pj 5 1)H»£2 (Pj s;n,—1,re) (j=06,7),
Mg = —I5(1,0,r),
Mgc9 = —K.(1,0,r),

where



D. Bigoni, M. Gei | International Journal of Solids and Structures 38 (2001) 5117-5148 5147

R + -
FF(r) = {211(71 —DE— g |p} 14258 (g 1)” : (C5)
H3 M3
1
G (r)=nn-1) +3 P, (C.6)
- kre .. ET AT ;7
k:LJ ET=—, A =—, ﬂ=ﬂ—3,~ (C.7)
My Ha M3 H3

The notation { }* means that all quantities inside braces have to be evaluated according to the su-
perscript.
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